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1. Background

• Increase in hydrogen and battery powered vehicles in the near future

• Current design guides and models may not consider phenomena

such as jet flames

• Accidents in tunnels of particular concern

• Tunnel linings: high moisture content, low permeability concrete -> 

higher spalling risk

• New tools needed for more accurate modelling of tunnel fires

• Joint doctoral project between Aalto University and DTU
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Figure 1. Reinforcement exposed by explosive spalling (left) and the fire-damaged

concrete floor of the Liverpool Echo Arena parking garage (31.12.2017) (right)



Pressure build-up-induced spalling

Ppore > fct

1. Background

Thermal stress-induced spalling

σsurface > fc
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Figure 2. Spalling due to pore pressure Figure 3. Spalling due to thermal stresses
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Factors affecting spalling behaviour:

• Porosity 1,2

• Permeability 1,2

• Moisture content 1,2,3

• Aggregate size 4,5

• Certain cement additives 6

• Application of loading 6,7

• Restraints 6,7

• Size of the sample 8



1. Background

Complexity of modelling concrete at elevated temperatures:

• Concrete is a porous, heterogeneous medium

• Presence of multi-phase water and associated phase changes

• Chemical reactions occurring in the cement (dehydration)

• Mechanical properties of concrete, reinforcing steel and water are 

temperature-dependent

• Many of the properties needed in the model equations are derived 

experimentally
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Modelling of concrete at elevated temperatures

• Despite micro scale heterogeneity, continuum assumption is valid

• Heterogeneity scale smaller than at which changes in temperature, 

moisture content or pressure can be observed 9

• Different concretes characterized by macroscopic material properties

despite micro scale differences 10



1. Background

• Fire simulations commonly carried out using Fire Dynamics 

Simulator (FDS)

• In its current state, FDS lacks the functionality needed to model

concrete spalling

• Aside from thermal conduction, a method to calculate moisture

transfer in porous material is needed



1. Background

The objective: Expansion of FDS functionality and the existing

solid thermal conduction solver into a coupled heat and mass

transfer solver for porous materials
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Modelling assumptions and simplifications

• 1D model

• Ideal gases

• Two phases: condensed (solid+liquid) and gas

• Movement of liquid water ignored

• Mechanical effects ignored

• Movement of gases described by Fick‘s law and Darcy‘s law

• Heat transfer via conduction only; thermal equilibrium; averaged thermal properties

• Phase changes and chemical reactions described by Arrhenius eqn.



2. The model

Primary variables

• Solid species mass fraction Ys,α

• Gas species mass fraction Yg,α

• Temperature T

• Pressure P



2. The model

Solid phase preliminary

definitions

Gas phase preliminary

definitons

Total density
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Governing equations



2. The model

Gas species boundary conditions

Pressure boundary conditions

Heat transfer boundary conditions



3. The solver



3. The solver

Numerical solution, prototype

• Prototype programmed in MATLAB, later to be implemented in FDS

• Discretization using finite difference method

• Backward Euler scheme, fully implicit (later Crank-Nicolson)

• Iterative solver due to strong non-linearity

• Convergence checked with relative tolerance for mass fractions and 

absolute tolerance for other variables
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Figure 4. Discretization of the domain



3. The solver
Multiple problems have been encountered, and solved…

• First version, implicit Crank-Nicolson, but problems with source term splitting

• Second version, explicit Forward Euler, but instability due to trying to catch the acoustic pressure wave

• Third version, implicit Backward Euler, functional

… but there are still limitations and unfinished features

• Cannot account for swelling, shrinkage or removal of material (cells) yet

• Spalling too complex to be fully predictable in 1D…

• … but can be predicted with reasonable accuracy in 1D in certain scenarios relevant for tunnel fire

simulation

• Crank-Nicolson scheme is still preferable to Backward Euler due to second vs. first order accuracy



3. The solver

Verification and validation

• Verification is being carried out

• Validation later using the results of planned small-scale experiments

and data from literature



Transient heat conduction

through a semi-infinite slab

• Four cases with varying

parameters

• Comparison with analytical

solution and FDS

3. The solver

Figure 5. Transient heat conduction through a 

semi-infinite slab, analytical vs. numerical

solution



Gas phase mass conservation, 

sealed system

• Sealed front and back surface

• Source term activates, 

releases a set amount of gas 

into system for a given time, 

then deactivates

3. The solver

Figure 6. Gas phase mass conservation, 

sealed system



Gas phase mass conservation, 

mass flux through back

• Sealed front, open back 

surface

• Gas concentration (and 

pressure) spike / excess mass

at t=0 s in the first cell

3. The solver

Figure 7. Gas phase mass conservation, mass

flux through back surface
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